原文标题:《AI in Web3: Navigating AI’s Future with Web3》
原文作者:DWF Labs Research
原文编译:Sharon、Luccy,BlockBeats
编者按:
在过去的一年中,ChatGPT 3.5 的推出,引发了人们对 AI 的担忧与热烈讨论,Vitalik 也在他的文章中指出许多人担心出现垄断版本的 AI,因此倾向于延迟其进展。DWF Labs Research 深入剖析 ChatGPT 3.5 的突破对 AI 在 Web3 时代的影响,揭示了 AI 面临的挑战,以及 DAI(去中心化 AI)的潜力。BlockBeats 将原文编译如下:
在年末之际,我们将探讨今年最热门的议题之一——人工智能(AI)。过去一年,AI 成为讨论的焦点,源于 OpenAI 推出的 ChatGPT 3.5。这一发布展示了 AI 的巨大经济潜力,引发了全球关于其未来、影响和相关风险的讨论。
随着乐观情绪的增长,怀疑论也随之而来,潜在的后果开始引起监管机构的警觉。由于 AI 的迅猛崛起和模糊的监管框架,它让人想起加密货币领域的早期阶段。人们将这两个行业进行了比较,突出了 Web3 的去中心化特性,似乎与 AI 的潜在中心化力量相辅相成。
很快,几乎每个 Q1 的 Web3 风投讨论都集中在 AI 的变革潜力上(有时候我会思考自己是参加的是 Web3 活动还是 AI 活动)。在这一年中,我们还看到一些风投公司转向 AI,或将其纳入其投资版图中。
随着炒作的热情逐渐消退,DWF Ventures 现在希望以公正的视角重新审视 AI 领域。本文简要概述了 AI 的演进过程以及它如何达到目前的热度。然而,文章的叙述方式有所不同,我们将从传统关注 AI 如何影响 Web3 转向探讨相反的问题——Web3 如何影响 AI。在这个探索中,我们深入探讨了去中心化和 Web3 如何作为催化剂,解决 AI 当前面临的挑战。
图源:Khan, Pasha, & Masud, 2021
与最近围绕 AI 的炒作热情相反,其历史可以追溯到上世纪 30 年代。图灵在 1950 年的工作,比如图灵测试,为 AI 奠定基础。尽管早期对 AI 存在乐观情绪,但由于计算障碍和无法满足实时需求,进而引发了上世纪 70 年代的「AI 寒冬」。上世纪 80 年代,专家系统使 AI 焕发活力,利用知识数据库来模拟人类专业知识。这一时代也见证了连接主义的复兴和递归神经网络的兴起。
然而,专家系统在知识获取和实时分析方面面临挑战,导致在上世纪 90 年代出现了衰退,个人电脑的性能也导致其相关性逐渐减弱。多年来,AI 领域发展迅速,分支出机器学习、自然语言处理、计算机视觉、语音识别等各种技术领域。这些发展使得 AI 从简单的问题解决,逐渐发展到在复杂应用领域中进行深度学习。
图源:Mukhamediev et al., 2022
在发展过程中,AI 经历了各个子领域的融合。其中,机器学习和大语言模型(LLM)领域,在转换垂直领域取得了重大进展。Ashish Vaswani 等人的论文《Attention is All You Need》明显启发了生成式预训练转换器(GPT)模型。
此后,大量的 GPT 模型出现,如双向的「BERT」GPT 和 OpenAI 团队的 GPT。在 ChatGPT 之后,出现了开源的替代方案,如 Falcon 和 LLaMA2,加剧了对下一代 GPT 迭代的竞争,潜在地更接近人工通用智能(AGI)。
GPT 的炒作有助于将 AI 从学术界解放出来,获得数十亿人关注。在发布后的两个月内,OpenAI 创造了每周活跃用户 1 亿的最快的发展速度。根据麦肯锡最近的一项研究,目前约有 51% 的科技行业专业人士在他们的工作中使用 AI。
Vitalik Buterin 在他的文章中进行的最新调查表明,许多人担心出现垄断版本的 AI,因此倾向于延迟其进展。
图源:My techno-optimism
最近对 AI 的担忧激增可以追溯到 ChatGPT 迅速走红,其人类化的回答是推动因素。然而,大多数人没有意识到,虽然 GPT 模仿人类互动,但它并不是通用 AI(AGI)。
每次 GPT 生成一个输出时,它在统计上是变化的,其缺乏一致性和事实准确性的保证。此外,GPT 还面临其他限制,但其最突出的缺点在于无法进行逻辑推理,尤其在数学方面十分明显。
图源:《GPT 语言模型的局限性在于其在「少样本学习」方面的能力较弱》
鉴于围绕 AI 存在的众多关切,以及高效管理大型 AI 模型所面临的现有挑战,探索将 Web3 与 AI 整合成为缓解 AI 面临挑战的潜在途径。利用 Web3 中固有的去中心化和分布式计算原则,有望帮助解决当前 AI 系统面临的问题。
由于 AI 能力在中心化系统中的集中,引发了对数据访问、模型相关性以及 AI 应用的整体可持续性的担忧。中心化的 AI 系统面临着重大的障碍,尤其是对于专有的大型数据集。
来源: Elon’s tweet
这导致了按查询计费,X 设置了每日有限的帖子查看次数。不久后,Grok、X GPT 的发布使用户能够实时访问 X 的数据。这种模式创建了经济屏障,并引发了有关 AI 利益可及性和包容性的问题。
此外,由于已发布模型快速过时,如果没有持续的数据更新,将在保持相关性和准确性方面面临面临重大挑战。目前,ChatGPT 3.5 的训练数据包含截至 2022 年 1 月的信息。Llama 2 也是在 2023 年 1 月至 2023 年 7 月的数据上进行训练的。
针对这些挑战,DAI 崭露头角,为中心化的局限性提供了潜在解决方案。
来源: (Janbi et al., 2023)
DAI 呈现了一种替代轨迹,以应对中心化模型固有的挑战。Janbi 等人最近发表的一篇元分析论文作为一份全面指南,详细介绍了 DAI 的五个主要领域。
来源: (Janbi et al., 2023) + DWF Ventures
DAI 带来了 AI 发展中的一场令人兴奋的变革,提供了诸多优势。然而,认识到伴随这些进步而来的挑战至关重要。
来源: (Eduardo, L., & Hern, C. ,1988) +DWF Ventures
总的来说,迈向 DAI 的旅程展现出巨大的潜力。实现 DAI 的全部潜能依赖于达到关键质量,这受到现有 AI 用户群的推动。由于供应商和用户有限,开源替代方案面临一些障碍,而 ChatGPT API 为大众市场提供了实际而经济的选择,提供了便利和可靠性。
然而,考虑到垄断性通用 AI 可能带来的潜在后果,个体在选择和行动中应重新权衡便利性与去中心化之间的取舍。在更广泛的层面上,Web3 和 AI 社区的创新者可以通过重新定义 AI 工作流、重新构想基础设施、拥抱创新范式、高效管理,以及开发符合去中心化原则的应用程序来应对这些挑战。在我们继续这条道路的同时,合作、包容和道德考虑将是塑造一个真正造福人类的 DAI 景观的关键。
「原文链接」
欢迎加入律动 BlockBeats 官方社群:
Telegram 订阅群:https://t.me/theblockbeats
Telegram 交流群:https://t.me/BlockBeats_App
Twitter 官方账号:https://twitter.com/BlockBeatsAsia