ABCDE:從一級市場視角看待AI+Crypto

24-02-11 15:32
閱讀本文需 18 分鐘
总结 AI 總結
看總結 收起
原文來源:ABCDE


時隔ChatGPT 發布一年多,最近市場上關於AI+Crpyo 的討論再次熱鬧起來,AI 被視作24–25 年牛市一個最為重要的賽道之一,就連V 神本人都發文《The promise and challenges of crypto + AI applications》(Crypto+AI 應用前景與挑戰)探討未來AI+Cryto 可能的探索方向。


本文不會做太多的主觀預判,而是單純的從一級市場角度,把過去一年觀察到的AI 與Crypto 結合的創業計畫做一個大致梳理,看看創業者俱體是從哪些角度切入的市場,目前取得了哪些成就,又有哪些地方依舊仍在探索。


一. AI+Crypto 的週期


整個23 年,我們聊了差不多有幾十個AI+Crypto 的項目,其中可以看到明顯的周期。


22 年底ChatGPT 發表前,二級市場與AI 相關的區塊鏈專案寥寥無幾,大家能想到的主要就是FET,AGIX 等幾個老牌項目,一級市場能夠見到的AI 相關同樣不多。


23 年1–5 月可以說是AI 計畫的第一個集中爆發期,畢竟Chatgpt 給人帶來的衝擊太大,二級市場許多舊專案紛紛Pivot 去AI 賽道,一級市場也是幾乎每週都能聊到AI+Crypto 的專案。同樣的,這段時期的AI 項目給人感覺相對簡單,很多都是基於ChatGPT 的“套皮”+“鏈改”項目,幾乎沒有任何技術上的核心壁壘,我們的In-House 開發團隊往往花個一、兩個天便能復刻出一個專案基礎架構。也導致了我們這段時間聊了很多 AI 項目,但最終沒有任何出手。


5–10 月的二級市場開始轉熊,很有意思的是一級市場的AI 項目在這段時間也驟減了許多,直到最近一兩個月數量才再次活躍起來,市面上關於AI+Crypto 的討論,文章等等也同樣豐富起來。我們再次進入每周可以遇見 AI 項目的「盛景」。時隔半年後明顯感覺到新出現的一批AI 項目對AI 賽道的理解,商業場景的落地,AI+Crypto 的結合比第一批AI Hype 時期有了明顯的提升,技術壁壘雖然依舊不強,但整體成熟度上了一個台階。我們也是進入 24 年才終於在 AI+Crpyto 這個賽道有了第一次押注。


二. AI+Crypto 的賽道


V 神在前景與挑戰一文裡從幾個相對抽象的維度和視角給出了預判:


・AI 作為遊戲中的參與者

・AI 作為遊戲介面

・AI 作為遊戲規則

・AI 作為遊戲目標


我們則從更具體和直接的角度來總結目前一級市場看到的這些AI 項目。 AI+Crypto 的專案大多都是圍繞著 Crypto 的核心去做的,也就是「科技(或政治)上的去中心化+商業上的資產化」。


去中心化沒什麼好說的,Web3 麼…根據資產化的品類,大體可以分為三個主賽道:


・算力的資產化

・模型的資產化

・資料的資產化


算力資產化


這是一個相對密集的一個賽道,因為除了各種新項目,還有好多老專案的Pivot,例如Cosmos 那邊的Akash,Solana 那邊的Nosana,且Pivot 之後代幣都是瘋漲的節奏,也側面反映出市場對於AI 賽道的看好,RNDR 雖然主打去中心化渲染,但其實也能服務於AI,所以很多歸類也都把RNDR 這類算力相關的統統劃分到了AI 賽道


算力資產化又可以根據算力用途再細分成兩個方向:


一個是以Gensyn 為代表的「去中心化算力拿來做AI 訓練」;


一個是大多數Pivot 以及新項目為代表的「去中心化算力拿來做AI 推理」;


在這條賽道上可以看到一個很有趣的現象,或是說不看好鄙視鏈:


傳統AI → 去中心化推理→ 去中心化訓練


傳統AI 科班出身的不看好去中心化做AI 訓練Or 推理


去中心化推理的不看好去中心化訓練的


原因主要是在技術上,因為AI 訓練(特指大模型AI )牽扯到海量的數據,而比數據需求更誇張的是這些數據高速通訊形成的頻寬需求。在目前Transformer 大模型的環境下,訓練這些大模型需要的是配備大量的4090 級別的高端顯示卡/H100 專業AI 顯示卡購成的算力矩陣+NVLink 與專業光纖交換機構成的百G 級別通訊通道,你說這東西能去中心化實現,hmm…



AI 推理對與算力和通訊頻寬的需求遠小於AI 訓練,去中心化實現的可能性自然比訓練大了很多,這也是為什麼多數算力相關項目都是搞推理的,訓練的基本上只有Gensyn,Together 這種融資過億的大玩家。但同樣,從性價比和可靠性這兩個角度來講,至少在現階段,中心化算力做推理依舊是遠好於去中心化的。


這就不難解釋,為什麼去中心化推理看去中心化訓練覺得「你們根本做不成」,而傳統AI 看去中心化訓練和推理會覺得「訓練技術上不切實際」,「推理商業上不靠譜」。


有人說BTC/ETH 剛出來的時候大家也說分散式節點全都算一遍這個模式相對雲運算不靠譜啊,最後不也成了?那就得看 AI 訓練和 AI 推理將來對於正確性,不可篡改,冗餘這些維度的需求了,單純拼性能,可靠性,價格這些,暫時確實不可能好過中心化。


模型的資產化


這也是專案札堆的賽道,也是相對於算力資產化比較容易理解的賽道,因為ChatGPT 火了之後最知名的應用之一就是 Character.AI了。你既可以和蘇格拉底,孔子這些先賢討教學問,也可以和馬斯克,山姆奧特曼這些名人閒聊吹水,更是可以和初音未來,雷電將軍這些虛擬偶像談情說愛,這一切,都是大語言模型的魅力。 AI Agent 這個概念經由Character.AI深入人心


如果孔子,馬斯克,雷電將軍這些Agent 都是NFT 呢?



這不就是AI X Crypto 麼? !


所以與其說是模型的資產化,不如說是基於大模型打造的Agent 的資產化,畢竟大模型本身是不可能上鍊的,更多是基於模型之上的Agent 映射成NFT 來打造類別「模型資產化」的AI X Crypto 即視感。


現在圈內有可以教你學英文的Agent,也可以有跟你談戀愛的Agent,各式各樣,包括Agent 的搜尋以及Market Place 等衍生項目也可以見到。


這個賽道的普遍問題是第一個沒有技術壁壘,基本上就是Character.AI的NFT 化,我們In-House 的技術大神用現有的開源工具和框架一晚上就搞出一個說話像BMAN,聲音也像BMAN 的Agent 。第二與區塊鏈的結合程度非常輕,有點像ETH 上的Gamefi NFT,本質上Metadata 裡存的可能只是一個URL 或是哈希,模型/Agent 都是在雲端伺服器上,鏈上交易的只是一個所有權而已。


模型/Agent 的資產化在可見的未來依舊會是AI x Crypto 最主要的賽道之一,希望可以看到相對有一定技術壁壘,與區塊鏈自身結合更加緊密也更加Native 的項目在未來可以出現。


資料的資產化


資料資產化從邏輯上來說是最適合AI+ Crypto 的,因為傳統AI 訓練,大多只能利用互聯網上有的看得見的數據,或者說更加精確一點—公域流量的數據,這些數據可能佔只有10–20% 不到,更多的資料其實都在私域流量(包括個人資料),如果這些流量資料可以用來訓練或是Fine-Tune 大模型,我們絕對可以在各個垂類領域擁有更專業的Agent/Bot。


Web3 最擅長的口號是什麼,Read,Write,Own!


那麼透過AI+Crypto,在去中心化激勵的引導下,釋放個人與私慾流量的數據,將其資產化,給大模型提供更好更豐富的「口糧」,聽起來是個十分符合邏輯的做法,也確實有幾個團隊在這個領域深耕。


然而這個賽道最大的困難是—數據這個東西很難像算力一樣標準化。去中心化算力你的顯卡什麼型號直接就可以轉化為多少算力,而私有數據數據的數量,質量,用途等各個維度都很難衡量,如果說去中心化算力是ERC20,那麼去中心化AI 訓練數據的資產化有點像ERC721,而且還是猴子PunkAzuki 很多項目,很多Traits 摻雜在一起那種,流動性與市場做起來的難度比ERC20 難上不是一點半點,所以目前做AI 數據資產化的專案都有點舉步維艱。


資料賽道還有一個值得一提的是去中心化標註,資料資產化是作用在「資料收集」這個步驟,而收集到的資料在餵養給AI 前還需要做一下加工,這就是資料標註的步驟。這個步驟目前也多是中心化的人力密集型勞動,透過去中心化的代幣獎勵去把這個Labour Work 變成去中心化,標註to Earn,或是類似眾包平台一樣的方式吧工作散出去,也是一個思路。有見到少量團隊目前在這個領域耕耘。



三. AI+Crypto缺少的拼圖


簡單說下從我們的視角來看,目前這個賽道缺失的拼圖。


一是技術壁壘。如同之前所講,絕大多數AI+Crypto 的項目相對於Web2 的傳統AI 項目來說幾乎沒有任何壁壘,更多是依靠經濟模型和代幣激勵在前端體驗,市場和運營上花心思,這當然也無可厚非,去中心化與價值分配本就是Web3 所長,只是缺乏核心壁壘難免會有X to Earn 的即視感。還是期待更多像是 RNDR 這種母公司 OTOY 有核心技術的團隊在 Crypto 裡大展拳腳。


二是從業者現狀。就目前觀察到的情況而言,AI X Crypto 這個賽道的創業家部分團隊很懂 AI,但對 Web3 的理解不深。而部分團隊非常的 Crypto Native,但在 AI 領域的造詣較淺。這與早期的 Gamefi 賽道非常類似,要嘛很懂遊戲想著 Web2 遊戲鏈改,要嘛很懂 Web3 想著各種打金模型的創新與優化。 Matr1x 是我們Gamefi 賽道遇到的第一個對遊戲和Crypto 理解雙A 的團隊,這也是為什麼之前我有寫到Matr1x 是我23 年“聊完即拍板”的三個項目之一,我們期待可以在24 年看到在AI 與Crypto 領域中理解雙A 的團隊。


三是商業場景。 AI X Crypto 處在一個極其早期的探索階段,上述的各類資產化只是幾個大的方向,其中每個方向都有可以仔細挖掘和細分的賽道。目前市面上看到的各類項目在AI 與Crypto 的結合多少有些「生硬」或是「粗糙」之感,並沒有發揮出AI 或是Crypto 最優的競爭力或是可組合性,這也與上述說的第二點息息相關。例如我們 In House 研發團隊就想到並設計了一個更優的結合方式,可惜看了這麼多 AI 賽道的項目,依舊沒有看到有團隊切入這個細分領域,所以只能繼續等待。


什麼,你問為什麼我們一個 VC 能比市面上的創業家先想到某些場景?因為我們的 In House AI 團隊裡有 7 位大神了,其中 5 位是科班 AI 的 PHD 出身。至於ABCDE 團隊對與Crypto 的理解麼,你懂的…


最後想說的是,雖然目前在一級市場的視角來看,AI x Crpyto 還非常的早期與不成熟,但這並不妨礙我們看好24–25 年,AI X Crypto 會成為這一輪牛市的主賽道之一。畢竟,AI 解放生產力,區塊鏈解放生產關係,還有比這兩者更好的結合方式麼:)



關於ABCDE


ABCDE 是專注於領投頂級Crypto Builder的VC,由耕耘了Crypto 行業10 年以上的Huobi Cofounder 杜均及前互聯網和Crypto 創業家BMAN 聯合創辦。 ABCDE 的聯合創始人們從 0 開始在 Crypto 行業建立了數十億美元市值的公司。因為我們是創業者,所以我們更懂得創業者。我們已經為ABCDE 的Builder 建立了上市公司(1611.HK)、交易所(Huobi )、SAAS 公司(ChainUP)、媒體(CoinTime.com)、開發者平台(BeWater.xyz) 等端到端的生態。


本文來自投稿,不代表律動 BlockBeats 觀點。


欢迎加入律动 BlockBeats 官方社群:

Telegram 订阅群:https://t.me/theblockbeats

Telegram 交流群:https://t.me/BlockBeats_App

Twitter 官方账号:https://twitter.com/BlockBeatsAsia

举报 糾錯/舉報
本平台現已全面集成Farcaster協議, 如果您已有Farcaster帳戶, 可以登錄 後發表評論
選擇文庫
新增文庫
取消
完成
新增文庫
僅自己可見
公開
保存
糾錯/舉報
提交